
Finding Frequent Patterns in a Large Sparse Graph

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 03-039

Finding Frequent Patterns in a Large Sparse Graph

Michihiro Kuramochi and George Karypis

September 25, 2003

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
25 SEP 2003 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Finding Frequent Patterns in a Large Sparse Graph

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Laboratory,2800 Powder Mill
Road,Adelphi,MD,20783-1197

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

FindingFrequentPatternsin aLargeSparseGraph∗

Michihiro KuramochiandGeorgeKarypis

Departmentof ComputerScience& Engineering/
Digital TechnologyCenter/ArmyHPCResearchCenter

Universityof Minnesota

4-192EE/CSBuilding, 200UnionSt SE

Minneapolis,MN 55455

{kuram,karypis}@cs.umn.edu

TechnicalReport#03-039

LastupdatedonSeptember25,2003at2:11PM

Abstract

This paperpresentstwo algorithmsbasedon the horizon-
tal and vertical pattern discovery paradigmsthat find the
connectedsubgraphsthat have asufficient numberof edge-
disjoint embeddingsin a single large undirectedlabeled
sparsegraph. Thesealgorithmsusethreedifferentmethods
to determinethenumberof theedge-disjointembeddingsof a
subgraphthatarebasedon approximateandexactmaximum
independentsetcomputationsanduseit to prune infrequent
subgraphs. Experimentalevaluation on real datasetsfrom
variousdomainsshow thatbothalgorithmsachievegoodper-
formance,scalewell to sparseinput graphswith morethan
100,000verticesandaround200,000edges,andsignificantly
outperformpreviouslydevelopedalgorithms.

Keywords patterndiscovery, frequentsubgraph,graphmin-
ing.

1 Intr oduction

Datamining is the processof automaticallyextractingnew
andusefulknowledgehiddenin largedatasets.Thisemerging
disciplineis becomingincreasinglyimportantasadvancesin
datacollectionhaveledto theexplosivegrowth in theamount
of availabledata.

In recentyears, there has beenan increasedinterest in
developing datamining algorithmsthat operateon graphs.
Suchgraphsarisenaturally in a numberof different appli-

∗This work wassupportedin partby NSFCCR-9972519,EIA-9986042,
ACI-9982274,ACI-0133464,and ACI-0312828; the Digital Technology
Centerat theUniversityof Minnesota;andby theArmy High Performance
ComputingResearchCenter(AHPCRC)underthe auspicesof the Depart-
ment of the Army, Army ResearchLaboratory(ARL) underCooperative
AgreementnumberDAAD19-01-2-0014. The contentof which doesnot
necessarilyreflectthe positionor the policy of the government,andno of-
ficial endorsementshouldbe inferred. Accessto researchand computing
facilitieswasprovidedby theDigital TechnologyCenterandtheMinnesota
SupercomputingInstitute.

cationdomainsincludingnetwork intrusion[47, 41],seman-
tic web [4], behavioral modeling[67, 55], VLSI reverseen-
gineering[70], link analysis[34, 40, 39,58], andchemical
compoundclassification[14, 43, 22,16]. Moreover, they can
beusedto effectively modelthestructuralandrelationalchar-
acteristicsof a varietyof datasetsarisingin otherareassuch
asphysicalsciences(e.g.,chemistry, fluid dynamics,astron-
omy, structuralmechanics,andecosystemmodeling),life sci-
ences(e.g., genomics,proteomics,pharmacogenomics,and
health informatics), and home-landdefense(e.g., informa-
tion assurance,network intrusion, infrastructureprotection,
andterrorist-threatprediction/identification).

The focusof this paperis on developingalgorithmsfor a
particulardataminingtask,whichis thatof findingfrequently
occurringpatternsin graphdatasets.Frequentpatternsplay
a critical role in many datamining tasksasthey canbeused
amongotherto derive associationrules[1], actascomposite
featuresfor classificationalgorithms[14, 56, 63, 51, 22, 50,
15], clusterthe (graph)transactions[1, 48, 35, 36, 49,24],
and help in determiningthe similarity betweengraphs[54,
23, 42, 59,9,49, 13, 60,66]. Within thecontext of graphs,the
mostwidely useddefinitionof apatternis thatof aconnected
subgraph[8, 68, 32, 29, 69, 30,44] and is the definition
that we will use in this paper. However, different pattern
definitionshavebeenproposedaswell [32].

Therearetwo distinct problemformulationsfor frequent
patternmining in graphdatasetsthat are referredto as the
graph-transactionsetting and the single-graph setting. In
thegraph-transactionsetting,the input to thepatternmining
algorithmis a setof relatively small graphs(calledtransac-
tions), whereasin the single-graphsettingthe input datais
a singlelarge graph. The differenceaffectsthe way the fre-
quency of thevariouspatternsis determined.For thegraph-
transactionsetting,the frequency of a patternis determined
by thenumberof graphtransactionsthatthepatternoccursin,
irrespective of how many timesa patternoccursin a partic-

ular transaction,whereasin thesingle-graphsetting,the fre-
quency of apatternis basedon thenumberof its occurrences
(i.e., embeddings)in the singlegraph. Due to the inherent
differencesof thecharacteristicsof theunderlyingdatasetand
theproblemformulation,algorithmsdevelopedfor thegraph-
transactionsettingcannotbe usedto solve the single-graph
setting,whereasthelatteralgorithmscanbeeasilyadaptedto
solve theformerproblem.

In recentyears,a numberof efficient andscalablealgo-
rithms have beendevelopedto find patternsin the graph-
transactionsetting[8, 68, 32, 29, 69, 30,44]. Thesealgo-
rithms arecompletein the sensethat they areguaranteedto
discover all frequentsubgraphsandwereshown to scaleto
very large graphdatasets.However, developingalgorithms
that are capableof finding patternsin the single-graphset-
ting hasreceived much lessattention,despitethe fact that
thisproblemsettingis moregenericandapplicableto awider
rangeof datasetsand applicationdomainsthan the other.
Moreover, existing algorithmsthatareguaranteedto find all
frequentpatterns [21,65] or algorithmsthat are heuristic,
suchas GBI [71] and SUBDUE [28] which tend to miss a
large numberof frequentpatterns,are computationallyex-
pensiveanddonot scaleto largedatasets.

Developing algorithmsthat find the completeset of fre-
quent patternsin the single-graphsetting is the focus of
this paper. We presenttwo computationallyefficient algo-
rithms that canfind subgraphswhich arefrequentlyembed-
dedwithin a large sparsegraph. The first algorithm,called
HSIGRAM, follows a horizontalapproach andfinds the fre-
quentsubgraphsin abreadth-firstfashion,whereasthesecond
algorithm,calledVSIGRAM, followsaverticalapproach and
findsthefrequentsubgraphsin adepth-firstfashion.Theseal-
gorithmsincorporateefficient algorithmsfor candidategen-
erationand frequency countingthat allow them to scaleto
graphscontainingover 100,000verticesand find patterns
with relatively low occurrencefrequency. Our experimen-
tal evaluationon six realgraphsshows thatboth HSIGRAM
andVSIGRAM achieve reasonablygoodperformance,scale
to large graphs,andsubstantiallyoutperformpreviously de-
velopedapproachesfor solvingsimilaror simplerversionsof
theproblem.

Therestof thispaperis organizedasfollows. Section2 de-
finesthegraphmodelthatweuse,reviewssomegraph-related
definitions,andintroducesthenotationthatis usedin thepa-
per. Section3 surveys relatedresearchin this area.Section4
formally definestheproblemof frequentsubgraphdiscovery
anddiscussesthechallengesassociatedwith finding themin
acomputationallyefficientmanner. Section5 describesin de-
tail theHSIGRAM andVSIGRAM algorithmsthatwe devel-
opedfor solvingtheproblemof frequentsubgraphdiscovery
from asinglelargesparsegraph.Section6 providesadetailed
experimentalevaluationof theHSIGRAM andVSIGRAM al-
gorithms on variousrealdatasetsandcomparesthemagainst
existing algorithms. Finally, Section7 provides somecon-
cludingremarks.

2 Definitions and Notation

A graph G = (V, E) is madeof two sets,thesetof vertices
V and the set of edgesE. Each edgeitself is a pair of
vertices,andthroughoutthis paperwe assumethatthegraph
is undirected,i.e.,eachedgeis anunorderedpair of vertices.
Furthermore,we will assumethat thegraphis labeled. That
is, eachvertex andedgehasa labelassociatedwith it that is
drawn from a predefined setof vertex labels(LV) andedge
labels(L E). Eachvertex (or edge)of thegraphis notrequired
to have auniquelabelandthesamelabelcanbeassignedto
many vertices(or edges)in thesamegraph.If all thevertices
andedgesof the graphhave the samevertex andedgelabel
assignedto them,wewill call thisgraphunlabeled.

Given a graphG = (V, E), a graphGs = (Vs, Es) is a
subgraphof G if andonly if Vs ⊆ V andEs ⊆ E. A graphis
connectedif thereis a pathbetweenevery pair of verticesin
thegraph.Two graphsG1 = (V1, E1) andG2 = (V2, E2) are
isomorphic if they aretopologicallyidenticalto eachother,
that is, thereis a mappingfrom V1 to V2 suchthateachedge
in E1 is mappedto a singleedgein E2 andvice versa. In
the caseof labeledgraphs,this mappingmustalsopreserve
the labelson the verticesandedges.An automorphism is
anisomorphismmappingwhereG1 = G2. Giventwo graphs
G1 = (V1, E1) andG2 = (V2, E2), theproblemof subgraph
isomorphism is to find an isomorphismbetweenG2 anda
subgraphof G1, i.e.,determinewhetheror notG2 is included
in G1.

Given a subgraphGs anda graphG, two embeddingsof
Gs in G arecalledidentical if they usethesamesetof edges
of G, and they arecallededge-disjoint if they do not have
any edgesof G in common. Given a setof all embeddings
of a particularsubgraphGs in a graphG, theoverlap graph
of Gs is a graphobtainedby creatinga vertex for eachnon-
identical embeddingand creatingan edgefor eachpair of
non-edge-disjointembeddings.An exampleof a subgraph
andits overlapgraphareshown in Figure2.

Thenotationthatwe will beusingthroughoutthepaperis
shown in Table1.

2.1 CanonicalLabeling

One of the key operationsrequiredby any frequent sub-
graphdiscoveryalgorithmis amechanismby which to check
whethertwo subgraphsareidenticalor not. Oneway of per-
forming this checkis to perform a graphisomorphismop-
eration. However, in casesin which many suchchecksare
requiredamongthe samesetof subgraphs,a betterway of
performingthis taskis to assignto eachgrapha uniquecode
(i.e., a sequenceof bits, a string,or a sequenceof numbers)
that is invarianton the orderingof the verticesandedgesin
thegraph. Sucha codeis referredto asthecanonical label
of a graphG = (V, E) [61, 18], andwe will denoteit by
cl(G). By usingcanonicallabels,we cancheckwhetheror
not two graphsareidenticalby checkingto seewhetherthey
have identicalcanonicallabels.Moreover, by comparingthe
canonicallabelswe canobtaina completeorderingof a set
of graphsin auniqueanddeterministicway, regardlessof the

Table1: Notationusedthroughoutthepaper

Notation Description
k-subgraph A connectedsubgraphwith k edges

(alsowrittenasasize-k subgraph)
Gk, Hk Graphsof sizek
E(G) Edgesof agraphG
V(G) Verticesof agraphG
cl(G) Canonicallabelof agraphG
dia(G) Diameterof agraphG
a, b, c, e, f Edges
u, v Vertices
d(v) Degreeof avertex v

l (v) Labelof avertex v

l (e) Labelof anedgee
H = G− e H is agraphobtainedby thedeletionof

edgee∈ E(G)

G Inputgraph
Gi G’s connectedcomponent
S(Gk+1) Setof all connectedsize-k subgraphsof Gk+1

M(G) = {mi } All embeddingsof asubgraphG in G

A(G) = {ei } All anchoredgesof asubgraphG in G

C Candidatesubgraph
Ck Setof candidateswith k edges
C Setof all candidates
F Frequentsubgraph
Fk Setof frequentk-subgraphs
F Setof all frequentsubgraphs
k∗ Sizeof thelargestfrequentsubgraphin G

L E Setof all edgelabelsin G

LV Setof all vertex labelsin G

original vertex andedgeordering.
A simpleway of definingthecanonicallabelof a graphis

asthe string obtainedby concatenatingthe uppertriangular
entriesof thegraph’s adjacency matrix whenthis matrix has
beensymmetricallypermutedsothat this stringbecomesthe
lexicographicallylargest (or smallest)over the strings that
canbeobtained fromall suchpermutations.Thisis illustrated
in Figure1 thatshows a graphG3 andthepermutationof its
adjacency matrix1 thatleadsto its canonicallabel“aaazyx”.
In thiscode,“aaa” wasobtainedby concatenatingthevertex-
labelsin the order that they appearin the adjacency matrix
and “zyx” was obtainedby concatenatingthe columnsof
the upper triangular portion of the matrix. Note thatany
other permutationof G3’s adjacency matrix will lead to a
codethatis lexicographicallysmaller(or equal)to “aaazyx”.
If a graphhas |V | vertices,the complexity of determining
its canonicallabel using this schemeis in O(|V |!) making
it impractical even for moderatesize graphs. Note that
the problemof determiningthe canonicallabel of a graph
is equivalent to determiningisomorphismbetweengraphs,
becauseif two graphsare isomorphicwith eachother, their
canonicallabelsmustbe identical. Both canonicallabeling
and determininggraph isomorphismare not known to be
eitherin P or in NP-complete[18].

In practice,thecomplexity of finding a canonicallabeling
of a graph can be reducedby using various heuristicsto
narrow downthesearchspaceor by usingalternatecanonical
labeldefinitionsthattakeadvantageof specialpropertiesthat
may exist in a particularsetof graphs[53, 52, 18]. As part
of our earlier researchwe have developedsuch canonical
labelingalgorithmthat fully makesuseof edge-andvertex-

1The symbol vi in the figure is a vertex ID, not a vertex label, and
blankelementsin theadjacency matrix meansthereis no edgebetweenthe
correspondingpair of vertices.

v2

v0 v1

x y

za

a

a

(a) G3

a

a

a

a a a

z

z

y

y

x

x

(b)

v0

v1

v2

v2v1v0

code= aaa zxy

a

a

a

a a a

y

y

x

z

z

x

(c)

v0

v1

v2

v2v0v1

code= aaa zyx

Figure1: Simpleexamplesof codesandcanonicaladjacency
matrices

labels for fast processingand various vertex invariants to
reducethe complexity of determiningthe canonicallabel of
a graph[45, 46]. Our algorithmcancomputethe canonical
labelof graphscontainingupto 50 verticesextremelyfastand
will bethealgorithmusedto computethecanonicallabelsof
thedifferentsubgraphsin thispaper.

2.2 Maximum IndependentSet

As discussedlater in Section4, our frequentsubgraphdis-
coveryalgorithmfocusesonfindingsubgraphswhoseembed-
dingsareedge-disjoint.A critical stepin obtainingthissetof
edge-disjointembeddingsfor a particularsubgraphis to find
the maximumindependentsetof its overlapgraph. Given a
graphG = (V, E), a subsetof verticesI ⊂ V is called in-
dependentif no two verticesin I areconnectedby anedge
in E. An independentset I is calledmaximal independent
set for every vertex v in I if thereis an edgein E that con-
nectsv to a vertex in V \ I . A maximal independentset I
is calledmaximum independentset (MIS) if I containsas
many verticesof V aspossible.

The problemof finding the MIS of a graphwas among
thefirst problemsprovedto be in NP-complete[19], andre-
mainsso even for boundeddegreegraphs.Moreover, it has
beenshown thatthesizeof MIS cannotbeapproximatedeven
within a factorof n1−o(1) in polynomialtime [17]. However,
theimportanceof theproblemandits applicabilityto awide-
rangeof domainshasattracteda considerableamountof re-
search.This researchhasbeenfocusedon developingboth
fasterexact algorithmsas well as approximatealgorithms.
The fasterexact algorithmto dateis the algorithmby Rob-
son [62] that solves the MIS problem in time O(1.211n),
making it possibleto solve in reasonableamountof time
probleminstancescontainingup to around100 vertices. In
this study, we useda fastimplementationof the exact max-
imum clique (MC) problemsolver wclique [57] insteadof
thosefastexact MIS algorithms. Becausethe MIS problem
onagraphG is equivalentto theMC problemona G’s com-
plementgraphḠ, wecanusewclique asa fastexactMIS al-
gorithm(EMIS). Heuristicalgorithmsfocuson finding max-
imal independentsetswhosesizeis boundedin termsof the
sizeof the optimal solution,anda numberof suchmethods
havebeendeveloped[27, 6, 38,25].

One of the most widely used heuristic is the greedy
algorithm (GMIS) which selectsa vertex of the minimum
degree, deletesthat vertex and all of its neighborsfrom
the graph,andrepeatsthis processuntil the graphbecomes
empty. A recentdetailedanalysisof theGMIS algorithmhas

shown thatit producesreasonablygoodapproximationsof the
MIS for bounded-andlow-degreegraphs[25]. In particular,
for a graph G with a maximumdegree1 and an average
degreed, thesize|I | of theMIS satisfiesthefollowing:

(2.1) |I | ≤ min

(

1+ 2

3
|GMIS(G)|,

d + 2

2
|GMIS(G)|

)

where|GMIS(G)| is thesizeof theapproximateMIS found
by theGMIS algorithm.

3 RelatedWork

Thepreviousresearchonfindingfrequentsubgraphsin graph
datasetsfalls undertwo categories. The first category con-
tains algorithmsfor finding subgraphsthat occur multiple
timesin a singleinput graph[71, 28, 21,65] andaredirectly
relatedto thealgorithmspresentedin this paper, whereasthe
secondcategory containsalgorithmsthatfind subgraphsthat
occur frequentlyacrossa databaseof small graphs[14, 31,
43, 45, 33,8, 68, 32, 29, 30,44]. Betweenthesetwo classes
of algorithms,thosedevelopedfor the latter problemare in
generalmore matureas they have moderatecomputational
requirementsandscaleto largedatasets.

In the restof this section,we will describeon the related
researchfor thesingle-graphsettingasit is directly relatedto
thetopicof thepaper.

Themostwell-known algorithmfor findingrecurringsub-
graphsin a singlelargegraphis theSUBDUEsystem,orig-
inally developedin 1994,and improved over the years[28,
10, 12, 11]. SUBDUE is an approximatealgorithm and
finds patternsthat cancompressthe original input graphby
substitutingthosepatternswith a single vertex. In evalu-
ating the extent to which a particularpatterncan compress
the original graph it usesthe minimum descriptionlength
(MDL) principle, and employs a heuristic beamsearchto
narrow the search-space.Theseapproximationsimprove its
computationalefficiency but at the sametime it preventsit
from finding subgraphsthat are indeedfrequent. GBI [71]
is anothergreedyheuristicsbasedalgorithmsimilar to SUB-
DUE.GhazizadehandChawathe [21]developedanalgorithm
calledSEuSthat usesadatastructurecalledsummaryto con-
structa lossycompressedrepresentationof the input graph.
This summaryis obtainedby collapsingtogetherall thever-
ticesof the input graphthathave thesamelabelandis used
to quickly prune infrequentcandidates.As the authorsin-
dicate,this summarydata-structureis usefulonly whenthe
input graphcontainsa relatively small numberof frequent
subgraphswith high frequency, and is not effective if there
area largenumberof frequentsubgraphswith low frequency.
Finally, Vanetik, Gudesand Shimony [65] presentedan al-
gorithm for finding all frequentlyoccurringsubgraphsfrom
a single labeledundirectedgraphusingthe maximumnum-
ber of edge-disjointembeddingsof a graphasa measureof
its frequency. Eachsubgraphis representedby its minimum
numberof edge-disjointpaths(pathnumber), andusealevel-
by-level approachto grow the patternsbasedon their path-
number. Their emphasisis on efficient candidategeneration

(a)Size-12graphG (b) Size-7subgraphG7 (c) Size-6subgraphG6

Figure3: Patternswith thenon-monotonicfrequency

andnospecialattentionis paidfor frequency counting.

4 Discovering Frequent Patterns in a Single Graph:
ProblemDefinition

A fundamentalissuethatneedsto beconsideredby any fre-
quentsubgraphdiscovery problemformulationsimilar to the
single-graphsettingis thecountingmethodof theoccurrence
frequency. In general,therearetwo possiblemethodsof the
frequency counting. Accordingto thefirst method,two em-
beddingsof a subgraphareconsidereddifferent,as long as
they differ by at leastoneedge(i.e., non-identical).As a re-
sult, arbitraryoverlapsof embeddingsof thesame subgraph
areallowed. On the otherhand,by the secondmethod,two
embeddingsareconsidereddifferent,only if they donotshare
edges(i.e., they areedge-disjoint).Thesetwo methodsare
illustratedin Figure2. In this example,therearethreepos-
sible embeddingsof the subgraphshown in Figure 2(1) in
the input graphof Figure 2(2). Two of theseembeddings
(Figures2(3) and (5)) do not shareany edges,whereasthe
third embedding(Figure 2(4)) sharesedgeswith the other
two. Thus, if we allow overlaps,the frequency of the sub-
graphis 3, andif wedonot it is 2.

Thesetwo waysof countingthe frequency of a subgraph
leadto problemswith dramaticallydifferentcharacteristics.
If we allow arbitraryoverlapsbetweennon-identicalembed-
dings, thenthe resultingfrequency is not any longerdown-
wardclosed(i.e.,thefrequency of asubgraph doesnotmono-
tonically decreaseas a function of its length). This is il-
lustratedin Figure 3. Both G7 and G6 are subgraphsof
G. Although the smaller subgraphG6 has only one non-
identicalembedding,thelargerG7 hassix non-identicalem-
beddings.Ontheotherhand,if wedeterminethefrequency of
eachsubgraphby countingthemaximumnumberof its edge-
disjoint embeddings,then the resultingfrequency is down-
wardclosed[65].

Being able to take advantageof a frequency counting
methodthat is downward closedis essentialfor the compu-
tationaltractability of mostfrequentpatterndiscovery algo-
rithms. For this reason,our problemformulationsusesedge-
disjoint embeddings.Giventhis, oneway of formulatingthe
frequentsubgraphdiscoveryproblemfor thesingle-graphset-
ting asfollows [65]:

Definition 1 (Exact Discovery Problem) Given an input
graph G which is undirectedand labeled,and a parameter
f , find all connectedundirectedlabeledsubgraphsthat have
at least f edge-disjointembeddingsin G.

Unfortunatelyquiteoftenthisproblemcanbeintractable.By

(1) Subgraph (2) Inputgraph (3) Embedding1 (4) Embedding2 (5) Embedding3
Embedding2

Embedding3

Embedding1

(6) Overlaps

Figure2: Overlappedembeddings

thisdefinition,in orderto determineif asubgraphis frequent
or not, we needto find whethertheoverlapgraphof its non-
identicalembeddingscontainan independentsetwhosesize
isatleast f . Whenasubgraphis relatively frequentcompared
to the frequency threshold f , by using approximateMIS
algorithmswecanquickly tell thatsuchasubgraphis actually
frequent. However, in the casesin which the approximate
MIS algorithmdoesnot find a sufficiently large independent
set,theexactMIS needsto becomputedbeforeapatternwill
bekeptor discarded.Dependingon theresultingsizeof the
maximumindependentset, the subgraphwill be identified
asfrequentor infrequent. Also, if we neednot only to find
frequentsubgraphs,but also to find their exact frequency,
thentheexactMIS needsto becomputedontheoverlapgraph
of every pattern. In both cases,becausesolving the exact
MIS problemis in NP-complete(seeSection2.2), theabove
definitionof thefrequentsubgraphdiscoveryproblemcannot
betractable,evenfor a relatively simpleinputgraph.

To make the problem more practical, we proposetwo
alternative formulations that can find frequent subgraphs
without solvingtheexactMIS problem.

Definition 2 (ApproximateDiscovery Problem) Given an
input graph G which is undirectedand labeled,and a pa-
rameter f , find connectedundirectedlabeledsubgraphsthat
haveat least f edge-disjoint embeddingsin G as much as
possible.

Definition 3 (Upper Bound Discovery Problem) Given an
input graph G which is undirectedand labeled,and a pa-
rameter f , find all connectedundirectedlabeledsubgraphs
such that an upperboundon thenumberof its edge-disjoint
embeddingsis abovethethreshold f .

Essentially the solutions for those two problemsbecome
a subsetand a supersetof the solution for Definition 1,
respectively. Thefirst formulation,Definition 2, which asks
for a subsetof the solutionof Definition 1, requiresthat the
embeddingsof eachsubgraphform anoverlapgraphthathas
an approximateMIS whosesize is greaterthan or equalto
f . The secondformulation, Definition 3, which asksfor
a supersetof the solution of Definition 1, requiresthat an
upper bound on the size of the exact MIS of this overlap
graphis greaterthanor equalto f . Note thatasdiscussed
in Section2.2,suchupperboundscanbeeasilyobtainedfor
both the GMIS algorithm as well as for other approximate
algorithms.

5 Algorithms for Finding Frequent Subgraphs in a
Lar geGraph

We developedtwo algorithms,calledHSIGRAM 2 andVSI-
GRAM, which find all frequentsubgraphsaccordingto Def-
initions 1–3 describedin Section4. In both algorithms,the
frequentpatternsareconceptuallyorganizedin a form of a
lattice that is referredto asthe lattice of frequentsubgraphs.
The kth level of this lattice containsall frequentsubgraphs
with k edges(i.e., size-k subgraphs),anda nodeat level k
representinga subgraphGk is connectedto at mostk nodes
at level k − 1, eachcorrespondingto a distinct (i.e., non-
isomorphic)connectedsize-(k−1) subgraphof Gk. Thegoal
of both HSIGRAM andVSIGRAM is to identify thevarious
nodesof this latticeandthefrequency of theassociatedsub-
graphs.

The differencebetweenthe two algorithmsis themethod
they useto discover (i.e., generate)the nodesof the lattice.
HSIGRAM follows a horizontalapproachanddiscovers the
nodesin a breadth-firstfashion,whereasVSIGRAM follows
a vertical approachanddiscovers the nodesin a depth-first
fashion. Both horizontalandvertical approacheshave been
previously used to find frequent subgraphsin the graph-
transactionsetting [33, 44, 68, 8] and have their origins
on algorithmsdevelopedfor finding frequentitemsetsand
sequences[2, 3, 26,72].

A detaileddescriptionof HSIGRAM and VSIGRAM is
providedin therestof this section.

5.1 Horizontal Algorithm: HSI GRAM

Thegeneralstructureof HSIGRAM is shown in Algorithm 1
(the notationusedin the pseudo-codeis shown in Table1).
HSIGRAM takes asinput the graphG, the minimum fre-
quency threshold f , and the parameterMIS type that spec-
ifies the particularproblemdefinition (as discussedin Sec-
tion 4). It startsby enumeratingall frequentsingle- and
double-edgesubgraphsin G, andthenentersits maincompu-
tationalloop (Lines7–10).Duringeachiteration,HSIGRAM
first generatesall candidatesubgraphsof sizek+1 byjoining
pairsof size-k frequentsubgraphs(Line 8) andthencomputes
their frequency (HSIGRAM-COUNT in Line 11). Thecandi-
datesubgraphswhosefrequency is lower thantheminimum
threshold f arediscardedandtheremainingarekept for the
next level of thealgorithm.Thecomputationterminateswhen
nofrequentsubgraphsaregeneratedduringaparticularitera-
tion.

Thetwo key componentsof theHSIGRAM algorithmthat
significantlyaffect its overall computationalcomplexity are

2SiGraMstandsfor SingleGraphMiner.

Algorithm 1 HSIGRAM(G, MIS type, f)

1: B f is theminimumfrequency threshold.
2: BMIS typeis eitherapproximate,exactor upperbound.
3: F ← ∅

4: F1← all frequentsize-1subgraphsin G

5: F2← all frequentsize-2subgraphsin G

6: k← 2
7: while Fk 6= ∅ do
8: Ck+1← HSIGRAM-GEN(Fk−1, Fk, f)

9: Fk+1← ∅

10: for eachcandidateC in Ck+1 do
11: C.freq← HSIGRAM-COUNT(C, MIS type)
12: if C.freq≥ f then
13: addC toFk+1

14: F ← F ∪Fk+1

15: k← k+ 1
16: return F

the methodsusedto perform candidategenerationand to
computethe frequency of the candidatesubgraphs.In the
restof thissectionweprovideadditionaldetailson how these
operationsareperformedanddescribevariousoptimizations
thataredesignedto reducetheir runtime.

5.1.1 CandidateGeneration

HSIGRAM generatescandidatesubgraphsof sizek + 1 by
joining two frequentsize-k subgraphs.In orderfor two such
frequentsize-k subgraphsto beeligiblefor joining eachof the
two mustcontainthesamesize-(k − 1) connectedsubgraph.
The simplestway to generatethe completesetof candidate
subgraphsis to join all pairs of size-k frequentsubgraphs
that have acommonsize-(k − 1) subgraph.Unfortunately,
the problem with this approachis that a particular size-k
subgraphmayhave up to k differentsize-(k − 1) subgraphs
and as a result, if we considerall suchpossiblesubgraphs
and perform the resulting join operations,we will end up
generatingthe samecandidatepatternmultiple times, and
generatinga large number of candidatepatternsthat are
not downward closed. Such an algorithm would spenda
significantamountof time identifying uniquecandidatesand
eliminatingnon-downwardclosedcandidates(bothof which
operationsare non-trivial as they require to determinethe
canonicallabelof thegeneratedsubgraphs).

HSIGRAM addressesbothof theseproblemsby only join-
ing two frequentsubgraphsif andonly if they shareacertain,
properlyselected,size-(k− 1) subgraph.Algorithm 2 shows
thepseudo-codefor thecandidategeneration,wheretheprop-
erly selectedsize-(k−1) subgraphis denotedby F . For each
frequentsize-k subgraphFi , let P(Fi) = {Hi,1, Hi,2} bethe
two size-(k−1) connectedsubgraphsof Fi suchthatHi,1 has
thesmallestcanonicallabelandHi,2 hasthesecondsmallest
canonicallabelamongthevariousconnectedsize-(k−1) sub-
graphsof Fi . Wewill referto thesesubgraphsastheprimary
subgraphsof Fi . Note thatif every size-(k − 1) subgraphof
Fi is isomorphicto eachother, Hi,1 = Hi,2 and|P(Fi)| = 1.
HSIGRAM will only join two frequentsubgraphsFi andF j ,
if and only if P(Fi) ∩ P(F j) 6= ∅, and the join operation
will be donewith respectto the commonsize-(k − 1) sub-
graph(s).Theproof thatthisapproachwill correctlygenerate

Algorithm 2 HSIGRAM-GEN(Fk−1,Fk, f)

1: Ck+1← ∅

2: for eachF in Fk−1 do
3: for eachpair Fi , F j in F.childrendo
4: C← join Fi andF j basedon F
5: B testif thedownwardclosurepropertyholds.
6: S(C)← all connectedsize-k subgraphsof C
7: P(C)← two primarysubgraphsof sizek
8: skip← false
9: for eachS in S(C) do

10: if S.freq < f then
11: skip← true
12: break
13: if skip 6= true then
14: addC to Ck+1

15: B P(C) = {H1, H2}

16: addC to H1.childrenandto H2.children
17: return Ck+1

Algorithm 3 HSIGRAM-COUNT(Ck+1, MIS type)

1: (M(Ck+1),A(Ck+1))← HSIGRAM-EMBED(C,G)

2: G← build anoverlapgraphfromM(Ck+1)

3: {G1, G2, . . . , Gm} ← decomposeG
4: fMIS ← 0
5: for eachGi in {G1, G2, . . . , Gm} do
6: if Gi is easyto handlethen
7: fMIS ← fMIS + |EMIS(Gi)|

8: elseif MIS type= approximatethen
9: fMIS ← fMIS + |GMIS(Gi)|

10: elseif MIS type= exactthen
11: fMIS ← fMIS + |EMIS(Gi)|

12: elseif MIS type= upperboundthen
13: fMIS ← fMIS + |GMIS(Gi)|min((1+ 2)/3, (d + 2)/2)

14: B S(Ck+1) is asetof all connectedsize-k subgraphsin Ck+1

15: f p← thelowestfrequency amongS(Ck+1)

16: return min(fMIS, f p)

all valid candidatesubgraphsis presentedin [44]. Thiscandi-
dategenerationapproachdramaticallyreducesthenumberof
redundantandnon-downwardclosedpatternsthataregener-
atedandleadsto significantperformanceimprovementsover
the naiveapproach[45].

5.1.2 FrequencyCounting

HSIGRAM-COUNT in Algorithm 3 computesthe frequency
of acandidatesubgraphC byfirst identifyingall of its embed-
dings, constructingthe overlap graphof theseembeddings,
and then, basedon the MIS type parameter, finding an ap-
proximateor exact MIS of this overlapgraph. The outline
of this processis shown in Algorithms 4 and3. In the rest
of this sectionwe first describehow thevariousembeddings
areidentifiedfollowedby adescriptionof themethodusedto
efficiently computethedesiredmaximalindependentsets.

Embedding Identification In order to identify all the em-
beddingsof acandidateC, HSIGRAM-EMBED shown in Al-
gorithm 4 needsto solve the subgraphisomorphismprob-
lem. Performingthe subgraphisomorphismfor every can-
didate from scratchmay be expensive, especiallywhen an
input graphis large. HSIGRAM-EMBED reducesthis com-
putationalrequirementby using anchor edges. An anchor
edgeis a partial embeddingof a candidateC andworks as

Algorithm 4 HSIGRAM-EMBED(C,G)

1: BA: a setof all anchoredgesof C
2: A← intersectionof anchoredgesacrossS(C)

3: B collectall uniqueembeddingsof C intoM

4: M← ∅

5: for eachanchoredgee in A do
6: Me← all embeddingsof C thatincludestheedgee
7: M←M ∪Me
8: B collectall uniqueanchoredgesof C intoA

9: A← ∅

10: for eachembeddingm in M do
11: e← chooseoneedgefrom m arbitrarily
12: adde toA

13: return (M,A)

a constraintof the subgraphisomorphismproblemin which
narrowsdownthesearchspaceonly aroundtheanchoredge.

More specifically, HSIGRAM-EMBED createsand uses
anchor edgesas follows. First, the list of anchor edges
are createdright after frequency counting for size-(k − 1)

frequentsubgraph,by converting the list of its non-identical
embeddings.Theseedgeswill be usedlater for countinga
candidateof size k. Let Fi denotea frequentsubgraphof
sizek − 1 andsupposeFi hasN non-identicalembeddings
in total. After the frequency counting,Fi hasa list of all its
embeddingsM(Fi) = {m1, . . . , mN}. An anchoredgee of
anembeddingmi of F is anedgein E(G) thatis alsoapartof
mi . For every mi , HSIGRAM-EMBED arbitrarily choosesan
edgeandaddsit to A(Fi) (Line 11 in Algorithm 4). Because
of overlappedembeddings,someembeddingsmayleadto the
sameanchoredge.

Now, in the next iteration,supposea k-candidateC con-
tains a frequent (k − 1)-subgraphFi . Becausethere are
k edgesin E(C), C may have up to k distinct such fre-
quentsubgraphsof size k − 1, and each Fi holds the an-
chor edgelist. Beforestartingthe frequency countingof C,
first HSIGRAM-EMBED selectsoneof Fi whosefrequency
is thelowestamong{Fi }. For eachen ∈ A(Fi), HSIGRAM-
EMBED checksif thereis anedgeem ∈ A(F j) for all j 6= i
suchthattheshortestpathlengthbetweenen andem, denoted
by d, is within the diameterof C, denotedby dia(C). If there
is suchan edgeem from every A(F j) for j 6= i , en may be
a partof anembeddingof C, becauseif C is a frequentsub-
graphof sizek, theremustbea setof frequentsubgraphsof
sizek − 1 insidethesameembeddingof C. To computethe
exactpathlengthbetweenedgesen andem in Gi requiresall
pairsshortestpaths,whichmaybecomputationallyexpensive
when|E(Gi)| is large.HSIGRAM-EMBED boundsthislength
d by thedifferencebetweentwo lengths,|dn− dm|, wheredn

anddm aretheshortestpathlengthsfrom anarbitrarily cho-
senvertex v ∈ V(Gi) to en andem respectively. If en andem

arein the sameembeddingof Ci , alwaysd ≤ dia(C) holds
anddn ≤ dm+d. Thus,if |dn−dm| ≤ dia(C) is true,thenen

andem maybelongto thesameembeddingof C , otherwise
en andem cannotbe in the sameembedding(seeFigure4).
If en cannotfind suchem from everyA(F j) for j 6= i , em is
removedfromA(Fi) (Line 2). Becausethesubgraphisomor-
phismwill beperformedfor eachen, this pruningprocedure
caneffectively reducetherun-time.

dia(G)

en

v dn

em

dm d

Figure4: Distanceestimationbetweentwo edges

Finally, afterremovingunnecessaryanchoredges,for each
of theremaininganchoredges,all thesubgraphisomorphisms
of C arerepeatedlyidentifiedandthesetof embeddingsM
is built (Line 6).

Computing the Frequency Thefrequency of eachsubgraph
Ck+1 is computedby theHSIGRAM-COUNT functionshown
in Algorithm 3. In particular, HSIGRAM-COUNT computes
two different frequencies. The first, denotedby fMIS, is
computedbasedon thesizeof theMIS of theoverlapgraph
createdfrom theembeddingsof Ck+1. Thesecond,denoted
by f p, is the least frequency of all the connectedsize-k
subgraphsof Ck+1 (Line 15), which representsan upper
boundon Ck+1’s frequency derivedentirely from the lattice
of frequentsubgraphs.In thecasein which fMIS is computed
using Definition 3, the frequency bound provided by f p

mayactuallybe tighter, andthusmay leadto moreeffective
pruning. For this reason,the overall frequency of Ck+1 is
obtainedby takingtheminimumof fMIS and f p.

The frequency fMIS is computedas follows (Lines 2–
13). Givena patternandall of its non-identicalembeddings,
HSIGRAM-COUNT generatesits overlap graph G. Then,
HSIGRAM-COUNT decomposesG into its connectedcom-
ponentsG1, G2, . . . , Gm (m ≥ 1). Next, for eachconnected
componentGi , it checksthemaximumdegreeof its vertices
andif it is less thator equalto two (acycleor apath),it com-
putesits maximumindependentsetdirectly by theEMIS al-
gorithmbecauseit is trivial to computetheexactMIS for this
classof graphs(Line 7). If the maximumdegreeis greater
than two, HSIGRAM-COUNT useseither the resultof the
GMIS algorithm(Line 9), the resultof the EMIS algorithm
(Line 11), or the upperboundon the sizeof the exact MIS
(Equation2.1). The summationof thoseMIS sizesfor the
componentsis thefinal valueof fMIS. Note thatthedecom-
positionof the overlapgraphinto its connectedcomponents
allow us to take advantageof the propertiesof the special
graphsandalsoobtaintighterboundsfor eachcomponentas
themaximumdegreefor someof themwill belower thanthe
maximumdegreeof theentireoverlapgraph.

In addition,every edgeis marked if it is includedin any
embeddingof a frequentsubgraph. Unmarked edgesare
removedbeforeproceedingto thenext iteration.

5.2 Vertical Algorithm: VSI GRAM

The mostcomputationallyexpensive stepin the HSIGRAM
algorithm is frequency counting as it needsto repeatedly
perform subgraphisomorphismcomputations. The overall
time can be greatly reducedif insteadof storing only the
anchor-edgeswestorethecompletesetof embeddingsacross

successive levels of the algorithm. Becauseof HSIGRAM’s
level-by-level structure, these complete embeddingsneed
to be stored for the entire set of frequent and candidate
patternsof eachsuccessive pair of levels. This substantially
increasesthememoryrequirementsof this approach,making
it impracticalfor themostof interestingdatasets.Ontheother
hand,within the context of a vertical algorithm,storingthe
completesetof embeddingsis feasiblesincewe needto do
that only for the subgraphsalong the path fromthe current
nodeto theroot. Thus,a verticalalgorithmhaspotentiallya
computationaladvantageover a horizontalalgorithm,which
motivatedthedevelopmentof VSIGRAM.

However, beforedevelopingefficient algorithmsthatgen-
eratethelatticeof frequentsubgraphsin a depth-firstfashion
two critical stepsneedto be addressed.The first stepis the
methodthat is usedto ensurethat the samenodeof the lat-
tice andthedepth-firstsubtreerootedat that nodeshouldnot
be discoveredand explored multiple times. This is impor-
tant becauseeachnodeat level k will be connectedto up to
k differentnodesat level (k − 1). As a result,if thereareno
mechanismsby which to prevent therepeatedgenerationof
the samenode,a depth-firstalgorithmwill end-upperform-
ing redundantcomputations(i.e., generatingthesamenodes
multiple times),adverselyimpactingtheoverall performance
of thealgorithm.VSIGRAM eliminatestheseredundantcom-
putationsby assigningeachnodeat level k (correspondingto
a subgraphFk) to a uniqueparentnodeat level k− 1 (corre-
spondingto asubgraphFk−1, suchthatonly Fk−1 is allowed
to createFk. The subgraphFk−1 is called the generating
parent of Fk. Detailson how this is achieved is provided in
Section5.2.1.

Thesecondstepis themethodthatis usedto createsucces-
sor nodesin the courseof the traversal. In the caseof HSI-
GRAM, this correspondsto the candidategenerationphase,
andis performedby joining thefrequentsubgraphsof thepre-
viouslevel. However, sincethelatticeis exploredin a depth-
first fashion,suchjoining-basedapproachwill not work, as
the algorithmmay nothave yet discoveredthe requiredfre-
quentsubgraphs.To addressthisproblem,VSIGRAM creates
the successornodes(i.e., extendedsubgraphs)by analyzing
all theembeddingsof thecurrentsubgraphFk, andidentify-
ing thedistinctone-edgeextensionsto theseembeddingsthat
aresufficiently frequent. The frequentextensionsfor which
Fk is the generatingparentare then usedas the successor
nodesduringthedepth-firsttraversal.

The generalstructureof VSIGRAM is shown in Algo-
rithm 5. VSIGRAM startsby determiningall frequentsize-1
patternsandthen useseachoneof themasthestartingpointof
a recursive depth-firstextension(VSIGRAM-EXTEND func-
tion). VSIGRAM-EXTEND takes asinput a size-k frequent
subgraphFk andall of its embeddingsM(Fk) in G andpro-
ceedsasfollows. For eachsize-k embeddingm ∈M(Fk), it
identifiesandstoresevery possiblesize-(k + 1) subgraphin
G thatcontainsm. Fromthis setof subgraphs,it extractsall
size-(k+1) subgraphswhicharenot isomorphicto eachother
andstoresthemin Ck+1. Then,VSIGRAM-EXTEND elimi-
natesfrom Ck+1 all thesubgraphsthatdonothave Fk astheir

Algorithm 5 VSIGRAM
VSIGRAM(G, MIS type, f)

1: F ← ∅

2: F1← all frequentsize-1subgraphsin G

3: for eachF1 in F1 do
4: M(F1)← all embeddingsof F1

5: for eachF1 in F1 do
6: F ← F ∪ VSIGRAM-EXTEND(F1,G, f)

7: return F

VSIGRAM-EXTEND(Fk,G, MIS type, f)

1: F ← ∅

2: for eachembeddingm in M(Fk) do
3: Ck+1← Ck+1 ∪ {all (k+ 1)-subgraphsof G containingm}
4: for eachCk+1 in Ck+1 do
5: if Fk is not thegeneratingparentof Ck+1 then
6: continue
7: computeCk+1.freq fromM(Ck+1)

8: if Ck+1.freq < f then
9: continue

10: addCk+1 toF

11: return F

generatingparent(Lines 5–6) or areinfrequent(Lines 7–8).
Thesubgraphs remainingin Ck+1 arethefrequentsubgraphs
of size-(k+ 1) obtainedby anone-edge-extensionof Fk and
areusedas input for the next recursive call. The recursion
terminateswhenCk+1 = ∅, andthedepth-firstsearchback-
tracks.

In therestof this sectionwe provide additionaldetailson
how the variousoperationsareperformedanddescribevar-
ious optimizationsthat aredesignedto reduceVSIGRAM’s
run-time.

5.2.1 GeneratingParent Identification

TheschemethatVSIGRAM usesto determinethegenerating
parentof a particularsubgraphis asfollows. Supposea size-
(k + 1) frequentsubgraphFk+1 is just createdby extension
from a size-k frequent subgraphFk. By the canonical
labeling,theorderof edgesandverticesin Fk+1 is uniquely
determined.VSIGRAM removesthe last edgethat doesnot
disconnectFk+1 andobtainsanothersize-k subgraphF .

If F is isomorphicto Fk thenFk becomesthegenerating
parentof Fk+1, andVSIGRAM keepsthefurtherexploration
from Fk+1. Similartypeof approacheshavebeenusedearlier
in thecontext of verticalalgorithmsfor thegraph-transaction
setting [65, 68]. All of thesesharethe sameidea, which
avoids redundantfrequentpatterngenerationand traverses
thelatticeof patternsasif it wasa tree.

5.2.2 Efficient SubgraphExtension

Startingfrom a frequentsize-k subgraph,VSIGRAM obtains
theextendedsubgraphsof sizek+ 1 byaddinganadditional
edge(while preservingconnectivity) to all of its possibleem-
beddings.Specifically, for eachembeddingm of a frequent
k-subgraphF , VSIGRAM enumeratesall theedgesthat can
be addedto m to form a size-(k + 1) extendedsubgraph.
Eachof thoseedgesis representedby a tuple of 5 elements
s= (x, y, u, v, e), calledastem, wherex andy arethevertex

v2

v3

v4v1

v0 v5

φ0

cvid

φ1
φ2
φ3

φ∗

v1
v1
v3
v3

φ0

v1

v0
v0
v0
v0

v0
φ0

v2

φ0

v2
v2
v2

v2

v3

φ2

v1

v3

v1

v1

v4

φ1

v4

v5v5

v5

v4

(b) Canonicalvertex ID
andautomorphsm

(a)GraphG

Figure5: Size-6graphG, canonicalvertex IDs,andcanonical
automorphism

IDs of theedgein G, u andv, u < v, arethecorresponding
vertex IDs in F , ande is the labelof theedge.For u andv,
if thereis no correspondingvertex in F , −1 is usedto show
thatit is outsidethesubgraphF .

However, becauseof the automorphismof the subgraph
F , we cannot usethis stem representationdirectly. For
a particularembeddingm of a frequentsubgraphF in G,
theremaybemorethanonevertex mappingof thesubgraph
onto the embedding. If we simply useda pair of vertex
IDs of the subgraphto representa stem,dependingon the
mapping, the sameedge addition might be considereda
different stem,which would result in the wrong frequency
of the subgraph.To avoid this problem,every time a stem
is generated,its representationis normalizedas follows .
VSIGRAM enumeratesall possibleautomorphismsof F ,
denotedby {φi }. By anappropriateφi weobtainthecanonical
vertex ID for every vertex v ∈ V(F). ThecanonicalID of a
vertex v, denotedby cvid(v), is definedas

cvid(v) = min
i

φi (v).

The automorphismwith the least subscriptthat gives the
canonicalID for v is called the canonical automorphism,
denotedby φ∗v .

φ∗v = argmin
φi

φi (v), i < j if φi (v) = φ j (v)

For example,giventhesize-6graphG shown in Figure5(a),
cvid(v3) = v1 andφ∗v3

= φ2. Figure5(b) shows cvid andφ∗

for every vertex in G. Note thatalthoughφ3(v3) is alsov1,
becauseφ2 hasthe smallersubscript,2, φ∗v3

is φ2. Now for
eachstems = (x, y, u, v, e), φ∗(u, v) = (u′, v′) aredefined
asfollows.

u′ ≡ cvid(u), v′ ≡ φ∗u(v) if cvid(u) ≤ cvid(v)

u′ ≡ φ∗v (u), v′ ≡ cvid(v) otherwise

Then,stems is rewrittenas(x, y, u′, v′, e), whichisautomor-
phisminvariantrepresentationof s andis usedby VSIGRAM
to properlydeterminethefrequency of size-(k+ 1) extended
subgraphs.

Additional Optimization: Keeping Track of Edge Cre-
ation Status Each frequentsubgraphmaintains a three-
dimensionaltable,calledaconnectiontable. Eachelementin
thetableis denotedby ct(u′, v′, e) whichshows if it is possi-
bleto form anedgebetweentheverticesu′ andv′ whoseedge
label is e. Every time a stem(x, y, u′, v′, e) is discarded,the

correspondingelementin the connectiontableis updatedto
show that it is now impossibleto createanedgewith a label
e betweenu′ andv′. If ct(u′, v′, e) is deactivatedfor a fre-
quentsubgraphof sizek, thenfor any l > k, thereshouldnot
be any frequentsubgraphthathasanedgebetweenu′ andv′

with theedgelabele. We canreducethenumberof stemsto
be generatedby looking up the connectiontableduring the
stemenumerationphase.

5.2.3 FrequencyCounting

In the vertical algorithm, when a size-(k + 1) extensionis
processed,thereis only onesize-k frequentsubgraphvisible,
the generatingparent. VSIGRAM’s frequency counting is
similar to HSIGRAM-COUNT, except for the computation
of f p (seeLine 15 in Algorithm 3). HSIGRAM enforces
the downward closurepropertyon the frequency of a size-
(k + 1) candidate,by usingthe leastfrequency of all size-k
subgraphsof thecandidate.VSIGRAM cannottake thesame
step becauseVSIGRAM doesnot hold all size-k frequent
subgraphsat the time a size-(k + 1) extendedsubgraphis
created.InsteadVSIGRAM simply usesthefrequency of the
size-k generatingparentfrom which thecurrentsize-(k + 1)

extensionis obtained. As a result, VSIGRAM’s pruning is
looserthan thatof HSIGRAM.

6 Experimental Evaluation

In this section,we study the performanceof the proposed
algorithmswith various parametersand real datasets. All
experimentswere done on dual AMD Athlon MP 1800+
(1.53GHz) machineswith 2 GBytesmainmemory, running
theLinux operatingsystem.All therun-timesreportedarein
seconds.

6.1 Datasets

Weusedsix differentdatasets,eachobtained fromadifferent
domain, to evaluateand comparethe performanceof HSI-
GRAM and VSIGRAM. The basic characteristicsof these
datasetsareshown in Table2. Note thateven thoughsome
of thesegraphsconsistof multiple connectedcomponents,
the HSIGRAM and VSIGRAM algorithmtreat themasone
large graphanddiscover the frequentpatternsaccordingto
Definitions1–3describedin Section4.

The Aviation andCredit datasetsareobtained from[64].
The Aviation datasetis originally from the Aviation Safety
ReportingSystemDatabaseandtheCreditdatasetis from the
UCI machinelearningrepository[7]. The directededgesin
theoriginal graphdatawereconvertedinto undirectedones.
For the Aviation dataset,we removed undirectededgesto
show “near to” relationbetweentwo verticesbecausethose
edgesform cliqueswhichmakesthisgraphdifficult to mine.

The Citation datasetwascreatedfrom the citation graph
used in KDD Cup 2003 [37]. Each vertex in this graph
correspondsto a documentandeachedgecorrespondsto a
citation. Becauseour algorithmsare for undirectedgraphs,
thedirectionof thesecitationswasignored.Sincetheoriginal
datasetdoesnot have any meaningfullabel for vertices,we

generatedvertex labelsasfollows. We first useda clustering
algorithmto form clustersof thedocumentabstractsinto 50
thematicallycoherenttopics,andthen assignedtheclusterID
asthe label to thecorrespondingvertices.For theedges,we
usedaslabelsthedifferencein thepublicationyearof thetwo
papers.For example,if two paperswerepublishedin 1997
and 2002, an edgeis createdbetweenthosetwo document
verticeswith the label “5”. Finally, becausesomeof the
verticesin the resultinggraphhad a very high degree(i.e.,
authoritiesandhubs),wekeptonly theverticeswhosedegree
waslessor equalto 15.

The ContactMap datasetis madeof 170 proteins from
the ProteinData Bank [5] with pairwisesequenceidentity
lower than25%. The verticesin thesegraphscorrespondto
the differentaminoacidsand the edgesconnecttwo amino
acidsif they areeitherat consecutive sequencepositionsor
they arein contactin their 3D structure.To aminoacidsare
consideredto be in contactif the distancebetweentheir Cα

atomsis less than8 Å. Furthermore,while creatingthegraphs
we only considerednon-localcontactsthataredefinedasthe
contactsbetweenaminoacidswhosesequenceseparationis
at leastsix aminoacids.

The DTP datasetis a collectionof 2,319chemicalcom-
poundsrandomlyselectedfrom thedatasetof 223,644chem-
ical compoundsprovidedby theDevelopmentalTherapeutics
Program(DTP) at NationalCancerInstitute3. Note thateach
chemicalcompoundformsa connectedcomponentandthere
are2,319suchcomponentsin thisdataset.Eachvertex corre-
spondsto anatomandits labelrepresentstheatomtype. An
edgeis formedbetweentwo verticesif thecorrespondingtwo
atomsareconnectedby abond.Thetypeof abondis usedas
anedgelabel,andtherearethreedistinctedgelabels.

Finally, the VLSI datasetwasobtained fromthe Interna-
tional Symposiumon Physical Design’98 (ISPD98)bench-
mark suite4 and correspondsto the netlist of a real circuit.
Thenetlistwasconvertedinto a graphby first removing any
netsthatarelongerthanfour andthenusinga star-basedap-
proachto replaceeachnet(i.e.,hyperedge)by asetof edges.
Note thatfor thisdatasetwelimited thesizeof thelargestdis-
coveredpatternto five edges.This is becausefor thevalues
of thefrequency thresholdusedin our experiments,theonly
frequentpatternsthat containedmore than five edgeswere
paths,andbecauseof thehighly connectednatureof theun-
derlyinggraph,therewereavery largenumberof suchpaths,
makingit hardto find theselongerpathpatternsin reasonable
amountof time.

6.2 Results

Table 3 shows the resultsobtainedby the HSIGRAM and
VSIGRAM algorithmsfor the differentdatasets,for a wide
rangeof theminimumfrequency thresholdvalues f , andthe
threedifferentMIS-basedproblemdefinitions. For eachex-
periment,Table3 shows theamountof time (in seconds)re-

3DTP 2D and 3D Structural Information. http://dtp.nci.nih.gov/docs/
3d database/structuralinformation/structuraldata.html

4http://vlsicad.cs.ucla.edu/∼cheese/ispd98.html

Table2: Datasetsusedin theexperiments

Dataset Connected Vertices Edges Labels
Components Vertex Edge

Aviation 2703 101185 196964 6173 51
Credit 700 14700 28000 59 20
Citation 16999 29014 42064 50 12
ContactMap 170 33443 224488 21 2
DTP 2319 41190 86140 58 3
VLSI 2633 12752 23084 23 1

quiredby the particularalgorithm, the total numberof pat-
terns that were discovered, and size of the largestpattern.
Entriesin thetablemarkedwith “—” representsexperiments
that were abortedbecauseof high computationalrequire-
ments.

From theseresultswe can seethat as expected,for all
datasetsandalgorithms,asthevalueof f decreases,therun-
time for finding the frequentpatternsincreasesaswell. The
rateof increasein runtimefollows thecorrespondingrateof
increasein thenumberof patternsthatarebeingdiscovered.
Besidesthat,theresultsin thistablehelpillustratetherelation
betweenthe two key variablesin theseexperiments,which
arethe type of the particularalgorithm(HSIGRAM vs VSI-
GRAM) andthe type of frequency calculation(approximate
MIS, exactMIS, or upperboundMIS).

In general,the amountof time requiredby VSIGRAM is
smallerthan thatrequiredby HSIGRAM. In fact,asthevalue
of thefrequency thresholddecreases,VSIGRAM is up to five
timesfasterthanHSIGRAM. This is true acrossall datasets
for theapproximateandexactMIS problemformulation,and
for thosedatasetsfor whichtheupperboundMIS formulation
leads to the same number of frequent patternsfor both
algorithms. As discussedin Section5.2, the reasonfor that
performanceadvantageis the fact that by keepingtrack the
embeddingsof the frequentsubgraphsalong the depth-first
path, VSIGRAM spendssignificantly lesstime in subgraph
isomorphismrelatedcomputationsthanHSIGRAM does.

However, for certaindatasets,whentheupperboundMIS
formulation is used,VSIGRAM endsup generatingsignifi-
cantlymorepatternsthanthosegeneratedby HSIGRAM. For
example,in the caseof the DTP datasetand f = 20, VSI-
GRAM generatesalmost16 times more patternsthan HSI-
GRAM. In suchcases,the amountof time requiredby VSI-
GRAM is substantiallygreaterthan thatrequiredby HSI-
GRAM (32.4 timesgreaterin the DTP example). The rea-
sonfor that is the fact that becauseof its depth-firstnature,
VSIGRAM cannottake advantageof the frequentsubgraph
lattice to get a tight upperboundon the frequency of a sub-
graph basedon the frequency of all of its subgraphs,andit
basesits upperboundonly on the frequency of the generat-
ing parent. On the otherhand,becauseof its level-by-level
nature,HSIGRAM canusethe informationfrom all its sub-
patterns,andobtainsbetterupperbounds(seediscussionin
Section5.1.2).

ComparingthedifferentMIS-basedproblemformulations,
we canseethat the onebasedon the approximateMIS usu-
ally leadsto the fastestexecutiontime for both algorithms.
Moreover, for datasetsfor which the variousoverlapgraphs

Table3: Run-timein secondsandthenumberof foundfrequentpatternsfor thedifferentdatasets.this is thatandthat is this
andit is whatandwhatis it.

Aviation Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
2000 308 130 306 130 320 130 833 833 833 833 833 833 8 8 8 8 8 8
1750 779 342 787 342 789 341 2249 2249 2249 2249 2249 2249 9 9 9 9 9 9
1500 1603 743 1674 745 1584 739 5207 5207 5207 5207 5207 5207 10 10 10 10 10 10
1250 2726 1461 2720 1496 2781 1486 11087 11087 11087 11087 11087 11087 12 12 12 12 12 12
1000 5256 3667 5158 3683 5596 3818 30331 30331 30331 30331 30331 30331 13 13 13 13 13 13

Citation Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
100 0.1 0.0 0.1 0.0 0.1 0.0 6 6 6 6 7 11 1 1 1 1 2 5
50 0.1 0.1 0.1 0.1 0.6 — 39 39 39 39 113 — 2 2 2 2 7 —
20 0.6 0.3 0.9 0.5 139 — 266 266 266 266 12203 — 3 3 3 3 16 —
10 4.0 1.5 4.2 1.9 — — 986 986 988 988 — — 5 5 5 5 — —

Contact Run-time[sec] Numberof FoundPatterns LargestPatternSize
Map f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
400 3 2 3 2 10 — 100 100 100 100 246 — 2 2 2 2 8 —
300 10 3 10 3 183 — 186 186 186 186 2358 — 2 2 2 2 10 —
200 44 9 45 9 — — 505 505 505 505 — — 3 3 3 3 — —
100 362 63 356 71 — — 3183 3183 3186 3186 — — 5 5 5 5 — —
50 3505 607 3532 632 — — 29237 29237 29298 29298 — — 6 6 6 6 — —

Credit Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
500 0 0 0 0 0 0 24 24 24 24 24 24 3 3 3 3 3 3
200 10 4 10 4 9 4 1325 1325 1325 1325 1325 1325 7 7 7 7 7 7
100 49 20 45 21 45 20 11696 11696 11696 11696 11696 11696 9 9 9 9 9 9
50 169 78 172 80 169 78 73992 73992 73992 73992 73992 73992 11 11 11 11 11 11
20 2019 461 1855 468 1880 462 613884 613884 613884 613884 613884 613884 13 13 13 13 13 13

DTP Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
500 92 20 86 21 96 30 109 109 109 109 153 226 7 7 7 7 12 13
200 101 23 100 24 115 38 414 414 415 415 641 916 9 9 9 9 15 15
100 113 27 114 27 169 64 1244 1244 1244 1244 2484 3788 12 12 12 12 16 18
50 145 34 134 35 247 103 4028 4028 4028 4028 8295 13622 14 14 14 14 18 21
20 243 86 249 83 616 19998 21477 21477 21478 21478 52180 824702 16 16 16 16 20 81
10 813 311 882 294 2018 — 112535 112535 112539 112539 232810 — 21 21 21 21 21 —

VLSI Run-time[sec] Numberof FoundPatterns LargestPatternSize
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
200 11 3 — — 37 8 137 137 — — 347 415 5 5 — — 5 5
150 13 4 — — 46 9 156 156 — — 437 503 5 5 — — 5 5
100 42 7 — — 54 10 379 379 — — 519 609 5 5 — — 5 5
75 49 8 — — 56 10 409 409 — — 571 679 5 5 — — 5 5
50 236 15 — — 282 17 683 683 — — 946 1051 5 5 — — 5 5
25 428 18 — — 469 20 1452 1452 — — 1907 2131 5 5 — — 5 5

Note.Dashesindicatethecomputationwasabortedbecauseof thetoo long run-timeor memoryexhaustion.
f : theminimumfrequency threshold,H: HSIGRAM, V: VSIGRAM, Approx.: with approximateMIS, Exact:with exactMIS, UB: with upperboundMIS

arereasonablysmall (this is true for all our datasetsexcept
VLSI), the exact MIS-basedformulationleadsto small exe-
cutiontime aswell. Also, theupperboundMIS formulation
tendsto be slower than the other two primarily becauseit
generatesmorepatterns.However, the advantageof the up-
per boundformulationover the onebasedon the exact MIS
canbeseenfor theVLSI graphfor which theresultingover-
lap graphwaslarge, andexact MIS computationscould not
finish in reasonableamountof time. Finally, comparingthe
numberof patternsfound by the approximateandthe exact
MIS-basedformulations,we canseethat, in general,theap-
proximatealgorithmfails to discover a very smallnumberof
patterns.

Table4: SUBDUEResults

Dataset Run-time Numberof Pattern Frequency of
[sec] Patterns Size FoundPatterns

Aviation — — — — — — — —
Citation 8812 3 27 26 27 1 1 1
ContactMap 5043 3 224 223 223 1 1 1
Credit 517 3 6 5 5 341 395 387
DTP 1525 3 2 2 6 4957 4807 1950
VLSI 16 3 1 1 1 773 773 244

6.3 PerformanceComparisonwith Existing Algorithms

Comparisonwith SUBDUE WeranSUBDUE[28] version
5.0.65 on the samedatasetsdescribedin Section6.1 and

5Although this versionis not the latestone, it runs significantly faster
thanthecurrentlatestversion,5.0.8.

measuredthe run-time, the numberof discoveredpatterns,
their size, and their frequency. Theseresultsare shown in
Table 4. Theseresultswere obtainedby using SUBDUE’s
default settingsfor all but the VLSI dataset.For the VLSI
dataset,we run SUBDUE so that to find subgraphsthat
contain at most five edges,as was done in the case of
HSIGRAM and VSIGRAM. Note that SUBDUE’s default
settingsreturnsatmostthreesubgraphsthatweredetermined
to bethemostimportant.

Becauseof theinherentdifferencesbetweenSUBDUEand
our algorithms,it is impossibleto performa directcompari-
sonof theresultsthatthey generate.For this reasonourcom-
parisonswill focusmostly on highlighting somekey points.
First, the amountof time requiredby SUBDUE is in gen-
eral,considerably higherthan thatrequiredbyouralgorithms.
For example,SUBDUEdid notfinishthecomputationfor the
Aviation datasetafterspendingfour entiredays.Also for the
CitationandContactMap datasets,SUBDUEcouldnot find
any meaningfulpatternsat all, as the patternsthat it found
hada frequency of one. For theCreditdatasetwith themin-
imum frequency thresholdof 50, both HSIGRAM and VSI-
GRAM with upperboundMIS spent169and78 secondsre-
spectively to discover thesamenumberof subgraphs,73992.
Thelargestpatternhas11edgesand hadafrequency of 58. In
contrast,thelargestpatternfoundby SUBDUEhadsix edges
with a frequency of 341.This indicatesthatif therearesmall
subgraphsthathave relatively high frequency, SUBDUEwill
focuson themandwill not discover the largerpatterns.We
canseethe similar result for the DTP dataset.The sizeof
the patternsSUBDUE found arevery small, 2–6 edges,but
their frequency is very high. On the otherhand,the results
in Table3 show thatwith theminimumfrequency threshold
20, both HSIGRAM andVSIGRAM underexact MIS spend
249and83 secondsrespectively to find 21,478frequentsub-
graphs,andthelargestsizeis 16.

Comparison with SEuS The SEuS[21] algorithm is de-
signedto find all frequentsubgraphsin a single-graphset-
ting. However, when determiningthe frequency of a sub-
graphthey considerall embeddingsirrespective of whether
they aredisjointor not. As aresult,asubgraphmayhavehigh
frequency even thoughit hassmall numberof edge-disjoint
embeddingsbecauseof overlappedembeddings.In [21], the
run-timeof SEuSon the PTE chemicaldataset6 is reported.
SEuS(SEuS-S1)spentmorethan20 secondsto find 34 fre-
quentsubgraphs,that is 1.4 frequentsubgraphsper second.
On the samedatasetgiven the minimum frequency thresh-
old of 500, VSIGRAM with upperboundMIS requires20
secondsto find 168 frequentsubgraphs,which translatesto
8.4frequentsubgraphspersecond.Similarly, with theCredit
dataset(which is called“Credit-4” in [20]), SEuS-S1spent
50 secondsto produce48 frequentsubgraphs(one frequent
subgraphsper second),while VSIGRAM with upperbound
MIS finds 1,325frequentsubgraphsin four secondsfor the
minimum frequency threshold200 (331 frequentsubgraphs

6ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/carcinogenesis/
progol/carcinogenesis.tar.Z

persecond).

7 Conclusions

In this paperwe addressedthe problem of finding all the
subgraphsthat have many edge-disjointembeddingsin a
large sparsegraph, a step critical to discovering patterns
in graph datasets. We studied three distinct formulations
of the problem that were motivated by the complexity of
identifying themaximumsetof edge-disjointembeddingsof
a subgraph,and developedtwo frequentsubgraphmining
algorithmsfor solving them. Thesealgorithmsare based
on the horizontalandvertical paradigms,respectively. Our
experimentalevaluationon many real datasetsshowed that
for mostdatasetsandproblemformulationsboth algorithms
achieve goodperformance,with theverticalalgorithmbeing
two-to-five timesfaster.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspaceclusteringof high dimensionaldata for
dataminingapplications.In Proc.of 1998ACM-SIGMODInt.
Conf. onManagementof Data, 1998.

[2] R. Agrawal andR. Srikant.Fastalgorithmsfor mining associ-
ation rules. In J. B. Bocca,M. Jarke, andC. Zaniolo,editors,
Proc.of the20thInt. Conf. onVeryLargeDataBases(VLDB),
pages487–499.MorganKaufmann,September1994.

[3] R.Agrawal andR.Srikant.Mining sequentialpatterns.In P. S.
Yu andA. L. P. Chen,editors,Proc. of the 11th Int. Conf. on
DataEngineering(ICDE), pages3–14.IEEEPress,1995.

[4] B. Berendt,A. Hotho,andG. Stumme.Towardssemanticweb
mining. In International SemanticWeb Conference(ISWC),
pages264–278, 2002.

[5] H. M. Berman,J.Westbrook,Z. Feng,G. Gilliland, T. N. Bhat,
H. Weissig,I. N. Shindyalov, andP. E. Bourne. The protein
databank.NucleicAcidsResearch, 28:235–242,2000.

[6] P. Bermanand T. Fujito. On the approximationproperties
of independentset problemin degree3 graphs. In Proc. of
WorkshoponAlgorithmsandDataStructures, pages449–460,
1995.

[7] C. L. Blake and C. J. Merz. UCI repository of machine
learningdatabases,1998.

[8] C. Borgelt andM. R. Berthold. Mining molecularfragments:
Findingrelevantsubstructuresof molecules.In Proc. of 2002
IEEEInternationalConferenceonDataMining (ICDM), 2002.

[9] L. P. Chew, D. Huttenlocher, K. Kedem,andJ.Kleinberg. Fast
detectionof commongeometricsubstructurein proteins. In
Proc. of the 3rd ACM RECOMBInternationalConferenceon
ComputationalMolecularBiology, 1999.

[10] D. J. Cook and L. B. Holder. Substructurediscovery us-
ing minimum descriptionlengthandbackgroundknowledge.
Journalof Artificial IntelligenceResearch, 1:231–255,1994.

[11] D. J.CookandL. B. Holder. Graph-baseddatamining. IEEE
IntelligentSystems, 15(2):32–41,2000.

[12] D. J.Cook,L. B. Holder, andS.Djoko. Knowledgediscovery
from structuraldata. Journal of Intelligent Information Sys-
tems, 5(3):229–245,1995.

[13] L. De Raedtand S. Kramer. The level-wise versionspace
algorithmandits applicationto molecularfragmentfinding. In
Proc. of the 17th InternationalJoint Conferenceon Artificial
Intelligence(IJCAI-01), 2001.

[14] L. Dehaspe,H. Toivonen, and R. D. King. Finding fre-
quentsubstructuresin chemicalcompounds. In R. Agrawal,
P. Stolorz,andG. Piatetsky-Shapiro,editors,Proc. of the 4th
ACM SIGKDD InternationalConferenceon Knowledge Dis-
coveryandDataMining (KDD-98), pages30–36.AAAI Press,
1998.

[15] M. Deshpande,M. Kuramochi,andG. Karypis. Automated
approachesfor classifying structures. In Proc. of the 2nd
Workshopon Data Mining in Bioinformatics(BIOKDD ’02),
2002.

[16] M. Deshpande,M. Kuramochi, and G. Karypis. Frequent
sub-structurebasedapproachesfor classifyingchemicalcom-
pounds. In Proc. of 2003IEEE InternationalConferenceon
DataMining (ICDM), 2003. to appear.

[17] U. Feige,S.Goldwasser, L. Lovasz,S.Safra,andM. Szegedy.
Approximatingclique is almostNP-complete.In Proc. of the
32nd IEEE Symposiumon Foundationsof ComputerScience
(FOCS), pages2–12, 1991.

[18] S.Fortin. Thegraphisomorphismproblem.TechnicalReport
TR96-20, Departmentof ComputingScience,University of
Alberta,1996.

[19] M. R. Garey andD. S.Johnson.ComputersandIntractability:
A Guideto the Theoryof NP-Completeness. W. H. Freeman
andCompany, New York, 1979.

[20] S. GhazizadehandS. Chawathe. Discovering freuqentstruc-
turesusing summaries. TechnicalReportCS-TR-4364,De-
partmentof ComputerScience,Universityof Maryland,2002.

[21] S. GhazizadehandS. Chawathe. SEuS:Structureextraction
usingsummaries.In Proc.of the5th InternationalConference
onDiscoveryScience, 2002.

[22] J. Gonzalez,L. B. Holder, and D. J. Cook. Application
of graph-basedconceptlearningto the predictive toxicology
domain. In Proc. of the Predictive Toxicology Challenge
Workshop, 2001.

[23] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Wil-
lett. Identificationof tertiarystructureresemblancein proteins
using a maximal commonsubgraphisomorphismalgorithm.
Journalof MolecularBiology, 229:707–721,1993.

[24] V. Guralnik andG. Karypis. A scalabalealgorithmfor clus-
teringsequencedatasets.In Proc.of 2001IEEE International
ConferenceonDataMining (ICDM), 2001.

[25] M. M. Halldórssonand J. Radhakrishnan. Greedis good:
Approximatingindependentsetsin sparseandbounded-degree
graphs.Algorithmica, 18(1):145–163,1997.

[26] J. Han, J. Pei, andY. Yin. Mining frequentpatternswithout
candidategeneration.In Proc.of ACM SIGMODInt. Conf. on
Managementof Data, Dallas,TX, May 2000.

[27] D. S. Hochbaum. Efficient boundsfor the stableset, vertex
cover, andsetpackingproblems.DiscreteAppliedMathemat-
ics, 6:243–254,1983.

[28] L. B. Holder, D. J.Cook,andS.Djoko. Substructurediscovery
in the SUBDUE system. In Proc. of the AAAI Workshopon
KnowledgeDiscoveryin Databases, pages169–180, 1994.

[29] M. Hong, H. Zhou, W. Wang, and B. Shi. An efficient
algorithmof frequentconnectedsubgraphextraction. In Proc.
of the 7th Pacific-AsiaConferenceon Knowledge Discovery
andDataMining (PAKDD-03), volume2637of LectureNotes
in ComputerScience, pages40–51.Springer-Verlag,2003.

[30] J. Huan,W. Wang,andJ. Prins. Efficient mining of frequent
subgraphin the presenceof isomophism. In Proc. of 2003
IEEE International Conferenceon Data Mining (ICDM’03),
2003. to appear.

[31] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
algorithmfor mining frequentsubstructuresfrom graphdata.
In Proc. of the 4th EuropeanConferenceon Principles and
Practice of Knowledge Discovery in Databases(PKDD’00),
pages13–23,Lyon,France,September2000.

[32] A. Inokuchi,T. Washio,andH. Motoda. Completemining of
frequentpatternsfrom graphs:Mining graphdata. Machine
Learning, 50(3):321–354,March2003.

[33] A. Inokuchi,T. Washio,K. Nishimura,andH. Motoda.A fast
algorithmfor mining frequentconnectedsubgraphs.Technical
ReportRT0448, IBM Research,Tokyo ResearchLaboratory,
2002.

[34] D. JensenandH. Goldberg, editors.Artificial Intelligenceand
Link AnalysisPapers from the 1998Fall Symposium. AAAI
Press,1998.

[35] I. Jonyer, D. J. Cook,andL. B. Holder. Discovery andevalu-
ationof graph-basedhierarchicalconceptualclusters.Journal
of MachineLearningResearch, 2:19–43,2001.

[36] I. Jonyer, L. B. Holder, andD. J. Cook. Hierarchicalconcep-
tual structuralclustering. International Journal on Artificial
IntelligenceTools, 10(1–2):107–136,2001.

[37] KDD Cup 2003. http://www.cs.cornell.edu/projects/kddcup/
datasets.html.

[38] S. Khanna,R. Motwani, M. Sudan,andU. V. Vazirani. On
syntacticversuscomputationalviews of approximability. In
Proc. of IEEE Symposiumon Foundationsof ComputerSci-
ence, pages819–830, 1994.

[39] J. M. Kleinberg. Authoritative sourcesin a hyperlinked
environment. Journal of the ACM (JACM), 46(5):604–632,
1999.

[40] J. M. Kleinberg, R. Kumar, P. Raghavan,S. Rajagopalan,and
A. S. Tomkins. The Web asa graph: Measurements,models
andmethods.LectureNotesin ComputerScience, 1627, 1999.

[41] C. Ko. Logic induction of valid behavior specificationsfor
intrusion detection. In IEEE Symposiumon Security and
Privacy(S&P), pages142–155, 2000.

[42] I. Koch,T. Lengauer, andE. Wanke. An algorithmfor finding
maximalcommonsubtopolotiesin a setof proteinstructures.
Journalof computationalbiology, 3(2):289–306,1996.

[43] S. Kramer, L. De Raedt,and C. Helma. Molecular feature
mining in HIV data. In Proc. of the 7th ACM SIGKDD
InternationalConferenceon Knowledge Discovery and Data
Mining (KDD-01), pages136–143, 2001.

[44] M. KuramochiandG. Karypis. An efficient algorithmfor dis-
covering frequentsubgraphs. IEEE Transactionson Knowl-
edgeandDataEngineering. in press.

[45] M. KuramochiandG. Karypis. Frequentsubgraphdiscovery.
In Proc. of 2001 IEEE International Conference on Data
Mining (ICDM), November2001.

[46] M. Kuramochiand G. Karypis. An efficient algorithm for
discovering frequent subgraphs. Technical Report 02-026,
University of Minnesota,Departmentof ComputerScience,
2002.

[47] W. LeeandS. Stolfo. A framework for constructingfeatures
andmodelsfor intrusiondetectionsystems.ACM Transactions
on InformationandSystemSecurity, 3(4),2000.

[48] N. Leibowitz, Z. Y. Fligelman,R. Nussinov, andH. J. Wolf-
son. Multiple structuralalignmentandcoredetectionby geo-
metric hashing. In Proc. of the 7th InternationalConference
on Intelligent Systemsin Molecular Biology, pages169–177,
Heidelberg, Germany, August1999.

[49] N. Leibowitz, R. Nussinov, and H. J. Wolfson. MUSTA—

a general,efficient, automatedmethodfor multiple structure
alignmentand detectionof commonmotifs: application to
proteins. Journal of computationalbiology, 8(2):93–121,
2001.

[50] W. Li, J. Han, and J. Pei. CMAR: Accurateand efficient
classificationbasedon multiple class-associationrules. In
Proc.of 2001IEEE InternationalConferenceon Data Mining
(ICDM), 2001.

[51] B. Liu, W. Hsu, and Y. Ma. Integrating classificationand
associationrule mining. In 4th Internation Conferenceon
KnowledgeDiscoveryandDataMining, 1998.

[52] B. D. McKay. Nautyusersguide. http://cs.anu.edu.au/∼bdm/
nauty/.

[53] B. D. McKay. Practicalgraph isomorphism. Congressus
Numerantium, 30:45–87,1981.

[54] E. M. Mitchell, P. J.Artymiuk, D. W. Rice,andP. Willett. Use
of techniquesderivedfrom graphtheoryto comparesecondary
structuremotifs in proteins. Journal of Molecular Biology,
212:151–166,1989.

[55] R. J. Mooney, P. Melville, L. R. Tang,J. Shavlik, I. de Cas-
tro Dutra, D. Page,andV. S. Costa. Relationaldatamining
with inductive logic programmingfor link discovery. In Na-
tional ScienceFoundationWorkshoponNext GenerationData
Mining, November2002.

[56] S. H. Muggleton. Scientific knowledgediscovery using In-
ductive Logic Programming. Communicationsof the ACM,
42(11):42–46,1999.

[57] P. R. J. Östergård. A fastalgorithmfor the maximumclique
problem.DiscreteAppliedMathematics, 120:195–205,2002.

[58] C. R. Palmer, P. B. Gibbons,andC. Faloutsos.ANF: A fast
andscalabletool for datamining in massive graphs. In Proc.
of the 8th ACM SIGKDD Internal Conferenceon Knowlege
Discovery and Data Mining (KDD’2002), Edmonton, AB,
Canada,July2002.

[59] X. PennecandN. Ayache.A geometricalgorithmto find small
but highly simialar3D substructuresin proteins.Bioinformat-
ics, 14(6):516–522,1998.

[60] J. W. Raymond. Heuristicsfor similarity searchingof chem-
ical graphsusing a maximumcommonedgesubgraphalgo-
rithm. J. Chem.Inf. Comput.Sci., 42:305–316,2002.

[61] R. C. ReadandD. G. Corneil. The graphisomorphdisease.
Journalof GraphTheory, 1:339–363,1977.

[62] J. M. Robson. Algorithms for maximumindependentsets.
Journalof Algorithms, 7:425–440,1986.

[63] A. Srinivasan,R.D. King, S.H. Muggleton,andM. J.E.Stern-
berg. Carcinogenesispredictionsusing ILP. In S. Džeroski
and N. Lavrač, editors,Proc. of the 7th International Work-
shopon InductiveLogic Programming, volume 1297, pages
273–287.Springer-Verlag,1997.

[64] SUBDUE databases.http://cygnus.uta.edu/subdue/databases/
index.html.

[65] N. Vanetik,E. Gudes,andS.E. Shimony. Computingfrequent
graph patternsfrom semistructureddata. In Proc. of 2002
IEEEInternationalConferenceonDataMining (ICDM), pages
458–465, 2002.

[66] X. Wang,J.T. L. Wang,D. Shasha,B. A. Shapiro,I. Rigoutsos,
andK. Zhang. Finding patternsin threedimensionalgraphs:
Algorithms andapplicationsto scientificdatamining. IEEE
TransactionsonKnowledgeandDataEngineering, 14(4):731–
749,July/August2002.

[67] S. Wasserman,K. Faust,and D. Iacobucci. Social Network
Analysis: Methodsand Applications. CambridgeUniversity

Press,1994.
[68] X. YanandJ. Han. gSpan:Graph-basedsubstructurepattern

mining. In Proc. of 2002 IEEE InternationalConferenceon
DataMining (ICDM), 2002.

[69] X. Yan and J. Han. CloseGraph: Mining closedfrequent
graphpatterns.In Proc.of the9thACM SIGKDDInternational
ConferenceonKnowledgeDiscoveryandDataMining (KDD-
2003), 2003.

[70] K. Yoshidaand H. Motoda. CLIP: Conceptlearning from
inferencepatterns.Artificial Intelligence, 75(1):63–92,1995.

[71] K. Yoshida, H. Motoda, and N. Indurkhya. Graph-based
inductionasa unifiedlearningframework. Journal of Applied
Intelligence, 4:297–328,1994.

[72] M. J. Zaki andK. Gouda.Fastverticalmining usingdiffsets.
In Proc.of the9thACM SIGKDDInternationalConferenceon
KnowledgeDiscoveryandDataMining (KDD-2003), 2003.

